top of page

Functional Polymer Interfaces for Bacteria Capture and Isolation

Identifying bacterial contamination in clinical or environmental samples often requires rapid, sensitive detection methods.  This motivates culture-free approaches to separate, identify and quantify bacteria.  Polymeric materials are advantageous for use in this application because they can be modified with biomolecules to exhibit unique chemical and biological properties that may improve bacteria capture.  We have developed surfaces that combine precise nanostructure with biofunctionality using a novel block copolymer surface coating.  These interfaces selectively bind, isolate and enrich microbial contaminants with high sensitivity and selectivity.

Capture.png

Publications:

​

  • P. Wenbap,  T. Rattanarojpong, P. Khunrae, T. Luangtongkum, L.E. Erickson, R.R. Hansen, P. Tuitemwong, "Combining Immunomagnetic Separation (IMS) with Multiplex PCR Assay for Simultaneous, Rapid Detection of Campylobacter jejuni and Campylobacter coli", Journal of Nanomaterials, , 5104187 (2022). doi: 10.1155/2022/5104187.

​​

  • M. Masigol, N. Fattahi, N. Barua, B.S. Lokitz, S.T. Retterer, T.G. Platt, and R.R. Hansen, “Identification of critical surface parameters driving lectin-mediated capture of bacteria from solution”, Biomacromolecules, 20, 7, 2852-2863 (2019). doi:10.1021/acs.biomac.9b00609

​

  • R.R. Hansen, S.T. Retterer, B.S. Lokitz, J.L. Morrell-Falvey, J.P. Hinestrosa, J.M. Messman, S.M. Kilbey, II, and J. F. Ankner, “Bioactive Polymer Scaffolds for High Avidity Cell Capture and Proliferation”, US. Pat. No. 10,131,899 (2018).

​​

  • W. Poonlapdecha, Y. Seetang-Nun, W. Wonglumsom, K. Tuitemwong, L.E. Erickson, R.R. Hansen, and P. Tuitemwong, “Antibody-Conjugated Ferromagnetic Nanoparticles with Lateral Flow Test Strip Assay for Rapid Detection of Campylobacter jejuni in Poultry Samples”, International Journal of Food Microbiology, 286, 6-14 (2018). doi: 10.1016/ijfoodmicro.2018.07.009

​​

  • M. Masigol, N. Barua, B.S. Lokitz, and R.R. Hansen, "Patterning Brush-like and Crosslinked Films of Azlactone-Based Block Co-polymers, Journal of Visualized Experiments, 136, e57562 (2018). doi: 10.3791/57562

​

  • M. Masigol, N. Barua, S.T. Retterer, B.S. Lokitz, R. R. Hansen. "Chemical copatterning strategies using azlactone-based block copolymers", Journal of Vacuum Science and Technology B, 35, 06GJ01 (2017); doi: 10.1116/1.4991881

​

  • R.R. Hansen, K.R. Shubert, J.L. Morrell-Falvey, M.J. Doktycz, B.S. Lokitz, and S.T. Retterer, “Microstructured Block Copolymer Surface Scaffolds for Controlling Microbe Capture and Morphology,” Biosensors, 4, 63-75 (2014). doi: 10.3390/bios4010063

​

  • R.R. Hansen, J.P. Hinestrosa, K.R. Shubert, J.L. Morrell-Falvey, D.A. Pelletier, J.M. Messman, S.M. Kilbey, II, B.S. Lokitz, and S.T. Retterer, “Lectin-Functionalized Poly(glycidyl methacrylate)-block-poly(vinyldimethyl azlactone) Surface Scaffolds for High Avidity Microbial Capture”, Biomacromolecules, 14, 3742-3748 (2013). doi:10.1021/bm4011358

bottom of page